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ABSTRACT

Let Ω be a bounded domain of the complex plane whose boundary is a

closed Jordan curve and (Fn)
n≥0 the sequence of Faber polynomials of Ω.

We say that a bounded linear operator T on a separable Banach space X

is Ω-hypercyclic if there exists a vector x of X such that {Fn(T )x : n ≥ 0}

is dense in X. We show that many of the results in the spectral theory

of hypercyclic operators involving the unit disk or its boundary have Ω-

hypercyclic counterparts which involve the domain Ω or its boundary.

The influence of the geometry of Ω or the smoothness of its boundary on

Faber-hypercyclicity is also discussed.

1. Introduction

1.1. Motivation. Let X be a complex infinite dimensional separable Banach

space and T ∈ B(X) a bounded linear operator on X . Our aim in this paper is

to study a modification of the classical notion of hypercyclicity. The operator T

is said to be hypercyclic if there exists a vector x ∈ X such that {T nx : n ≥ 0}

is dense in X . This property of the dynamical system (X,T ) has recently been

a subject of an extensive study , and we refer the reader to two surveys [15] and

[16] for a description of the main results in this area.

The motivation of our study comes from the following observation: there are

several results in the spectral theory of hypercyclic operators involving the unit

disk D or the unit circle T. A possible explanation for this frequent occurrence
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is given by the following remark. The unit disk is hidden in the definition of

a hypercyclic operator in the sense that the iterates T n coincide with FD

n (T ),

where FD

n (z) = zn represent the basic Taylor polynomials associated to D. Let

now Ω be a non-empty connected open subset of C with compact closure Ω

and rectifiable boundary ∂Ω. The Faber polynomials FΩ
n associated to the

domain Ω are a natural generalization of the Taylor polynomials of the disk,

and they are fundamental in many questions of complex approximation (see for

instance [25]). Among the simplest results of the theory is the fact that any

function which is analytic in a neighborhood of Ω can be expanded as a series
∑

n≥0 anF
Ω
n for appropriate complex scalars an, which is uniformly convergent

on Ω (see for instance [25, p. 52]). For the precise definition and a survey of

the main properties of the Faber polynomials we refer the reader to Section 2

below. The following definition is now natural:

Definition 1.1: A bounded operator T on X is said to be Ω-hypercyclic if

there exists a vector x of X such that {FΩ
n (T )x : n ≥ 0} is dense in X . Such a

vector is an Ω-hypercyclic vector for T , and the set of such vectors is denoted

by HCΩ(T ).

Then D -hypercyclicity is exactly the same notion as hypercyclicity. Saying

that T is Ω-hypercyclic is equivalent to requiring that the sequence (FΩ
n (T ))n≥0

be universal (see [15]). Thus several properties of universal sequences apply to

Faber-hypercyclic operators. However, some properties of the iterates T n =

FD

n (T ) which are crucial in the proofs of several hypercyclicity statements (like

the semigroup property T n+m = T nTm, for instance) are no longer true in

general for FΩ
n (T ). In spite of this, it turns out that most of the results in

the spectral theory of hypercyclic operators involving the unit disk/circle have

natural analogs for Faber-hypercyclic operators which involve the corresponding

open domain Ω or its boundary. An interesting feature in this study is the

influence of the geometry of the domain Ω and of the smoothness of its boundary

on Ω-hypercyclicity. For another instance of such a relationship between the

geometry of the domain and the behaviour of the Faber polynomials of an

operator (in relation to the boundary point spectrum σp(T ) ∩ ∂Ω), see [2].

1.2. Review of some known results. We recall now some spectral proper-

ties of hypercyclic operators involving the unit circle T, and their connections
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with hypercyclicity. The simplest of these spectral properties appears in the

early work of Kitai ([18]):

Theorem 1.2 (Kitai’s necessary condition): If T ∈ B(X) is hypercyclic, every

connected component of the spectrum σ(T ) of T meets the unit circle T.

According to a result of Herrero ([17]), if H is a Hilbert space, the norm-

closure in B(H) of the set HC(H) of hypercyclic operators on H can be com-

pletely described in terms of spectral properties of the operator, some of them

involving the unit circle. See [17] for the complete statement. One of the main

ingredients of Herrero’s proof of this result is a criterion for hypercyclicity due to

Godefroy and Shapiro ([13]). The Godefroy-Shapiro criterion brought to light

the interplay between the behaviour of eigenvectors associated with eigenvalues

inside or outside D and hypercyclicity properties:

Theorem 1.3 (Godefroy-Shapiro criterion): For any bounded operator T on

X , consider the two linear manifolds

H+(T ) = sp [ker(T − λI) : |λ| > 1]

and

H−(T ) = sp [ker(T − λI) : |λ| < 1].

If H+(T ) and H−(T ) are dense in X , then T is hypercyclic.

More recently, the connection between properties of the eigenvectors associ-

ated to eigenvalues of modulus 1 (such eigenvectors will be called T-eigenvec-

tors in the sequel) and properties of the dynamical system (X,T ) was studied in

[11], [5] and [4]. We quote here one result, which can be seen as the “unimodular

counterpart” of the Godefroy–Shapiro Criterion:

Theorem 1.4 ([4]): Let T ∈ B(X) be an operator enjoying the following prop-

erty: there exists a continuous probability measure σ on the unit circle T (i.e.,

such that σ({λ}) = 0 for every λ ∈ T) such that for every subset A of T with

σ(A) = 1, we have

sp [ker(T − λI) : λ ∈ A] = X.

Then T is hypercyclic.

When T satisfies the assumption of the above theorem, we say (as in [4])

that T has a perfectly spanning set of T-eigenvectors. A Hilbert space operator
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with a perfectly spanning set of T-eigenvectors is even frequently hypercyclic

([5]): there exists a vector x in X such that for every non-empty open subset U

of X , the set of instants n ∈ N where T nx visits U has positive lower density.

This notion was studied, for instance, in [5], [6], [8], [7], using in particular some

tools of ergodic theory. The corresponding notion of frequent Ω-hypercyclicity

is readily defined:

Definition 1.5: A bounded operator T on X is said to be frequently Ω-hyper-

cyclic if there exists an x ∈ X such that for every non-empty open subset U of

X ,

dens{n ≥ 0 : Fn(T )x ∈ U} := lim inf
N→+∞

1

N
#{n ≤ N : Fn(T )x ∈ U} > 0.

1.3. Organization of the paper. Section 2 is mostly expository. We recall

the definition of Faber polynomials and some known facts which will be of use

in the sequel. We discuss the influence of the geometry of the given domain

on the behaviour of the corresponding Faber polynomials inside, outside or on

the boundary of the domain. We then present in Section 3 some basic results

about Ω-hypercyclicity, for the so-called UB-domains Ω. Under the additional

assumption that the boundary of Ω is a rectifiable Jordan curve, we prove the

analogue of Kitai’s necessary condition: if T is Ω-hypercyclic, every connected

component of the spectrum of T meets the boundary of Ω (Proposition 3.3). We

then derive a form of the Godefroy–Shapiro Criterion of [13] in this new setting

(Theorem 3.4) under the only assumption of the rectifiability of the boundary

of the domain. Theorem 3.4 allows us to obtain in Herrero’s fashion ([17]) a

characterization, in terms of spectral properties, of the norm closure in B(H) of

the set of all Ω-hypercyclic operators on a complex infinite dimensional separa-

ble Hilbert space H (Example 3.8). A more surprising fact is that a version of

Theorem 1.4 above holds true in the Ω-hypercyclicity setting, and the proof of

this fact (for domains with C1+α boundary) is the object of Section 4 (Theorem

4.2). Section 5 is devoted to the study of frequent Ω-hypercyclicity. We cannot

apply directly the ergodic-theoretical methods used for D-hypercyclicity because

the new definition does not involve the iterates of a given operator, a crucial

point when one is looking forward to applying such tools as Birkhoff’s ergodic

theorem, for instance. Nonetheless, it turns out that under reasonable assump-

tions on the ∂Ω-eigenvectors of T (eigenvectors of T associated to eigenvalues

belonging to the boundary of Ω) and on the smoothness of ∂Ω, the operator T
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is frequently Ω-hypercyclic (Theorem 5.1). This is the exact parallel of a state-

ment of [6, Section 5.8]. The proof uses the Frequent Universality Criterion of

[8]. This gives examples of operators on Fréchet spaces, such as the translation

or differentiation operators on the space of entire functions on C, which are

frequently Ω-hypercyclic for every bounded domain Ω with sufficiently smooth

boundary (Examples 5.2 and 5.3).

2. Faber polynomials of a domain Ω

We collect in this section some basic facts about Faber polynomials of a domain

Ω. Our main reference here is [25], see also [21] or [26].

2.1. Definition and examples. In what follows, Ω will be a bounded domain

of the complex plane whose boundary ∂Ω = C is a closed Jordan curve. Its

complement Ω
c

being simply connected in the extended complex plane, there

exists by the Riemann mapping Theorem a unique function ψ : D
c
−→ Ω

c

meromorphic outside D which maps D
c

conformally and univalently onto the

complement Ω
c

of the closure of Ω, and such that ψ(∞) = ∞ and ψ′(∞) > 0.

The Laurent expansion of ψ for |w| > 1 is of the form

ψ(w) = aw + d0 + d1/w + d2/w
2 + · · ·

where a > 0 is the transfinite diameter or (logarithmic) capacity of Ω. The

inverse function φ of ψ maps Ω
c

conformally and univalently on D
c
, and φ has

a Laurent expansion in a neighbourhood of ∞ of the form

φ(z) = (1/a)z + b0 + b1/z + b2/z
2 + · · · .

The n-th Faber polynomial FΩ
n of the domain Ω is the polynomial part of the

Laurent expansion of φ(z)
n

at infinity for n ≥ 1, and FΩ
0 is identically equal to

1. When there is no risk of confusion, we will usually write Fn instead of FΩ
n .

We have

φ(z)
n

= Fn(z) + ωn(z) for z ∈ Ω
c
,

where ωn is a bounded analytic function on Ω
c

which tends to 0 at infinity. If

we denote by CR the curve CR = {ψ(w) : |w| = R} for R > 1, then, for every

z in the interior of CR (in particular, for every z in Ω), we have

(1) Fn(z) =
1

2iπ

∫

CR

φ(ζ)n

ζ − z
dζ =

1

2iπ

∫

|w|=R

wnψ′(w)

ψ(w) − z
dw.
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It follows that for z in the interior of CR and |w| > R,

(2)
wψ′(w)

ψ(w) − z
= 1 +

+∞
∑

n=1

Fn(z)

wn
, so that

ψ′(w)

ψ(w) − z
=

+∞
∑

n=0

Fn(z)

wn+1
·

Therefore the function wψ′(w)/(ψ(w) − z) is the generating function for the

Faber polynomials of Ω. The Faber polynomials of an open disk D(z0, R) are

given naturally enough by the formula Fn(z) = ((z−z0)/R)n for n ≥ 1. Another

case of a domain whose Faber polynomials can be explicitly computed is that

of an ellipse with foci at the points −1 and 1 and semi-axes a = 1/2(R+ 1/R)

and b = 1/2(R − 1/R) for some R > 1. In this case the map ψ is given by

the formula

ψ(w) = 1/2 (Rw + 1/(Rw)) for |w| > 1,

whence it follows that for n ≥ 1,

Fn(z) =
2

Rn
Cn(z),

where Cn is the n-th Chebyshev polynomial of the first kind (Cn(x) =

cos(n arccosx) for x ∈ [−1, 1]). We finish this subsection by emphasizing the

fact that in general, the Faber polynomials of a given domain Ω are not orthog-

onal polynomials with respect to a suitable measure on the boundary of Ω, and

that composition properties like zn ◦ zm = znm are no longer true for Faber

polynomials of general domains (see for instance [24] for a characterization of

the domains Ω such that FΩ
n ◦ FΩ

m = FΩ
nm for every n and m).

2.2. Behaviour of Fn(z) when z belongs to Ω. So far, we have imposed

almost no restrictions on the smoothness of the curve C. Since C is a Jordan

curve, ψ can be extended so as to be continuous on the domain 1 ≤ |w| < +∞,

and then ψ is a homeomorphism between T and C (this is Caratheodory’s

theorem, see for instance [22, Ch. 2]). Thus it makes sense to write ψ(w) for

|w| = 1 and φ(z) for z ∈ C. If we further suppose that C is rectifiable, ψ(eiθ) is

a continuous function of bounded variation, and it admits a derivative ψ′(eiθ)

almost everywhere on T which belongs to L1 :
∫ 2π

0

|ψ′(eiθ)|dθ < +∞.

Then by Lebesgue’s dominated convergence theorem, we can make R tend

to 1 in (1) for z ∈ Ω, and we obtain (see for instance [20]) that for every
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n ≥ 1 and z ∈ Ω

(3) Fn(z) =
1

2iπ

∫

|w|=1

wnψ′(w)

ψ(w) − z
dw =

1

2π

∫ 2π

0

ei(n+1)θψ′(eiθ)

ψ(eiθ) − z
dθ.

This gives information regarding the asymptotic behaviour of the Faber poly-

nomials inside the domain Ω: for z ∈ Ω, Fn(z) is the (n+1)-th Fourier coefficient

of an integrable function on [0, 2π], so Fn(z) tends to zero as n goes to infinity.

And it is not surprising that the smoother the curve C is, the quicker Fn(z)

will tend to zero for z ∈ Ω.

2.3. Uniform boundedness of Fn(z) on Ω. We will need conditions on the

geometry of the domain Ω insuring that the polynomials Fn are uniformly

bounded on Ω. We call such domains UB-domains:

Definition 2.1: The inner domain Ω of a Jordan curve in the complex plane is

said to be a UB-domain if the Faber polynomials of Ω are uniformly bounded

on Ω.

Let us give some examples of UB-domains. Every convex domain is a UB-

domain. Indeed, if Ω is convex, then ([19]) for every w with |w| ≥ 1 and every

n ≥ 0, we have

|Fn(ψ(w)) − wn| < 1.

In particular, the modulus of Fn is less than 2 on the boundary of Ω, and by

the maximum principle, |Fn(z)| ≤ 2 for every z ∈ Ω.

Other examples of UB-domains are the so-called Faber domains: let A(Ω) be

the Banach algebra of functions which are continuous on Ω and holomorphic

in Ω, endowed with the supremum norm. The Faber operator TΩ is the

linear operator from A(D) into A(Ω) mapping each monomial zn onto the n-th

Faber polynomial Fn. The domain Ω is called a Faber domain (or a Faber

set) if TΩ is a bounded operator. Each Faber domain is a UB-domain, with

|Fn(z)| ≤ ‖TΩ‖ for every n ≥ 0 and z ∈ Ω. For instance, piecewise Dini-smooth

domains, domains of bounded rotation or domains of bounded secant variation

are Faber domains. We refer to [12] (and the references therein) and [22] for

all undefined terms. In particular, the inner domains of Jordan curves of class

C1+α, α > 0, are UB-domains. Recall that, for p ≥ 0 and 0 < α < 1, the curve

C is of class Cp+α if it has a parametrization τ 7→ z(τ), 0 ≤ τ ≤ 2π, which is of

class Cp and such that z(p) is an α-Hölderian function. On the other hand, there
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are domains with quasiconformal Jordan boundaries which are not UB-domains

(see the examples in [19] or [12] of non-Faber domains).

2.4. Behaviour of Fn(z) when z belongs to the complement of Ω. We

will also need some information on the behaviour of Fn(z) outside the closure

of Ω. Suppose that Ω is a bounded domain with simply connected complement.

Then ([25, p. 43]) we have limn→∞ (|Fn(z)|)
1/n

= |φ(z)| uniformly on every

compact subset of Ω
c
. Since |φ(z)| > 1 on the complement of Ω, this implies

that |Fn(z)| tends to ∞ for every z /∈ Ω.

2.5. Behaviour of Fn(z) when z belongs to the boundary of Ω. In

order to complete the picture, it remains to study the behaviour of the sequence

(Fn(z)) when z lies on the boundary of Ω. If ∂Ω is a Jordan curve, we can write

any z ∈ C as z = ψ(w) for some w ∈ T, and

Fn(z) = Fn(ψ(w)) = wn − ωn(ψ(w)).

We are interested in the behaviour of the term ωn(ψ(w)) as n goes to infinity. If

the curve C is sufficiently smooth, ωn(ψ(w)) goes to zero uniformly in w ∈ T as

n goes to infinity, and the rate of decay to zero can be explicitly controlled. If

the curve C is of class Cp+α, the function ψ is of class Cp and ψ(p) is α-Hölderian

on Dc. If p ≥ 1, ψ′ does not vanish on Dc. If C is a curve of class Cp+α with

p ≥ 1 and α ∈]0, 1[, then (see [25, p. 68]) there exists a positive constant M

such that for every n ≥ 1 and z ∈ Ωc (z ∈ C = ∂Ω, in particular)

(4) |ωn(z)| ≤M
lnn

np−1+α
·

Of course if C is an analytic curve, it is easy to show that ωn(z) goes to zero

exponentially fast on Ωc: |ωn(z)| ≤M rn uniformly in z ∈ Ωc for some r < 1.

2.6. Estimating the derivatives of ωn. In the case when C is an analytic

curve, all the derivatives of ωn also tend to zero exponentially fast on Ωc (see

[23]). If we merely suppose that C is a curve of class Cp+α for some p ≥ 1 and

0 < α < 1, we can obtain some estimates for the derivatives of ωn up to the

order p− 1. This fact is mentioned in [23], and seems to belong to the folklore.

Since we have been unable to locate in the literature a precise statement or

proof, we give in the proposition below the estimate we will need in the sequel.
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Proposition 2.2: Let C be a curve of class Cp+α, p ≥ 1, 0 < α < 1. Then for

every n ≥ 1, ωn is a function of class Cp−1 on Ωc (up to the boundary of Ω),

and there exists a positive constant M such that for every k ≤ p− 1 and every

z ∈ Ωc,

(5) |ω(k)
n (z)| ≤M

lnn

np−1−k+α
·

Proof. The proof follows closely the ideas of [25, Ch. 4, p. 64]. For |w| > 1, let

us write the Laurent expansion for |t| ≥ 1 of the function

t 7→ h(t, w) = ψ′(t) ·
t− w

ψ(t) − ψ(w)
as h(t, w) =

+∞
∑

k=0

ak(ψ(w))

tk
·

Some easy computations show that

ωn(ψ(w)) = wn

( n
∑

k=0

ak(ψ(w))

wk
− 1

)

·

Now

ψ′(w)ω′
n(ψ(w)) = n

ωn(ψ(w))

w
+ wn

n
∑

k=0

(ψ′(w)a′k(ψ(w))

wk
−
k ak(ψ(w))

wk+1

)

·

The first term is easily controlled thanks to estimation (4): for some positive

constant M ,
∣

∣

∣

∣

n
ωn(ψ(w))

w

∣

∣

∣

∣

≤M
lnn

np−2+α
for every n ≥ 1 and every w ∈ T.

For the second term, consider

∂

∂t
h(t, w) = −

+∞
∑

k=0

k ak(ψ(w))

tk+1
.

By [25, Lemma 2, p. 66], the function

t 7−→
ψ(t) − ψ(w)

t− w

is of class Cp−1 and its (p − 1)-th derivative with respect to t is α-Hölderian,

with a constant in the Hölder condition independent of w ∈ T. It follows that

t 7→ h(t, w) satisfies the same conditions (recall that ψ′ does not vanish on D
c).
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Now for |w| > 1, the function h( · , w) has the following Fourier expansion on

the unit circle:

h(t, w) =

+∞
∑

k=0

ak(ψ(w))t−k.

The function ∂
∂th( · , w) being of class Cp−2+α, the Lebesgue inequality (see for

instance [25, Ch. 1, Th. 9]) implies that there exists a constant M (independent

of w) such that
∣

∣

∣

∣

∂

∂t
h(t, w) +

n
∑

k=0

k ak(ψ(w))

tk+1

∣

∣

∣

∣

≤M
lnn

np−2+α
for |w| > 1, t ∈ T.

In the same way,
∣

∣

∣

∣

∂

∂w
h(t, w) −

n
∑

k=0

ψ′(w)a′k(ψ(w))

tk

∣

∣

∣

∣

≤M
lnn

np−2+α
for |w| > 1, t ∈ T.

Now these inequalities are still true for w, t ∈ T, w 6= t, and since ∂
∂th(t, w) +

∂
∂wh(t, w) tends to 0 as t tends to w for every w ∈ T, we get that

∣

∣

∣

∣

n
∑

k=0

(

ψ′(w)a′k(ψ(w))

wk
−
k ak(ψ(w))

wk+1

)
∣

∣

∣

∣

≤M
lnn

np−2+α

and

|ψ′(w)ω′
n(ψ(w))| ≤M

lnn

np−2+α
for every n ≥ 1 and every w ∈ T.

Since ψ′ is bounded away from zero on T, we obtain on T the estimate for

the first derivative of ωn we were looking for. Since ωn tends to zero at infin-

ity, the maximum principle yields the same estimate for |w| ≥ 1. The proof

of the corresponding estimates for the other derivatives is done in the same

fashion.

3. Some basic properties of Ω-hypercyclic operators

As was already mentioned in the introduction, hypercyclicity implies several

spectral restrictions on the operator. We now proceed to investigate the corre-

sponding restrictions entailed by Ω-hypercyclicity. Here is a basic fact to begin

with:

Fact 3.1: Let Ω be a UB-domain, and T ∈ B(X) an Ω-hypercyclic operator.

Then the point spectrum σp(T
∗) of the adjoint of T is empty.
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Proof. Suppose that T ∗x∗ = zx∗ for some non-zero functional x∗ on X and

z ∈ C. Then for every x ∈ X , 〈x∗, Fn(T )x〉 = Fn(z)〈x∗, x〉. Because Ω is a UB-

domain, the Faber polynomials are uniformly bounded on Ω. Also, |Fn(z)| tends

to infinity if z is in the complement of Ω. This contradicts the Ω-hypercyclicity

of T .

As a straightforward consequence, we obtain

Fact 3.2: Let Ω be a UB-domain. The operator T ∈ B(X) is Ω-hypercyclic if

and only if for every non-empty open subsets U and V there exists an integer n

such that Fn(T )(U) ∩ V is non-empty, and HCΩ(T ) is then a dense Gδ subset

of X .

Proof. The only thing to prove is that HCΩ(T ) is dense in X . We use the

classical argument of [9]: since σp(T
∗) = ∅, p(T ) has dense range for every

non-zero polynomial p ∈ C[ξ]. Indeed every such non-zero polynomial can be

decomposed as a product p(ξ) = (ξ − z1)(ξ − z2) · · · (ξ − zr) of polynomials

of degree 1, and each operator T − zi, i = 1, . . . , r, has dense range. Hence

{Fn(T ) p(T )x : n ≥ 0} = p(T ){Fn(T )x : n ≥ 0} is dense in X for every p ∈

C[ξ] \ {0}, and p(T )x is an Ω-hypercyclic vector for T . It follows that HCΩ(T )

is dense in X .

The next step is to derive the analogue of Kitai’s necessary spectral condition.

Proposition 3.3: Let Ω be a UB-domain such that ∂Ω is a rectifiable Jordan

curve, and let T ∈ B(X) be an Ω-hypercyclic operator. Then every connected

component of the spectrum σ(T ) of T meets the boundary of Ω.

Proof. Suppose first that σ(T ) is connected. If σ(T ) ∩ ∂Ω = ∅, then σ(T ) is

either contained in Ω or in Ω
c
. Suppose that the compact set σ(T ) is included

in Ω, and consider the resolvent function R(λ, T ) = (λ−T )−1, which is analytic

on σ(T )c, in particular on a neighborhood of ∂Ω. If x belongs to X and x∗ to

X∗, the function fx,x∗(w) = 〈x∗, R(ψ(w), T )x〉 is well-defined and continuous,

hence bounded, on the unit circle. Using the integral representation (3) of the

Faber polynomials, we get

〈x∗, Fn(T )x〉 =
1

2π

∫ 2π

0

ei(n+1)θψ′(eiθ)〈x∗, R(ψ(eiθ), T )x〉 dθ.
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Since ψ′ in integrable on [0, 2π], these are the Fourier coefficients of an L1

function, so 〈x∗, Fn(T )x〉 tends to zero as n goes to infinity for every x and x∗,

so x cannot be an Ω-hypercyclic vector for T . If the boundary of Ω is an analytic

curve, another proof can be given using the methods of [1]: if σ(T ) ⊂ Ω, then

lim supn ‖Fn(T )‖1/n < 1 so that ‖Fn(T )‖ tends to zero as n goes to infinity,

and T cannot be Ω-hypercyclic. Suppose now that σ(T ) is contained in the

complement of Ω. Since φ is analytic on this domain, it makes sense to consider

the operators A = φ(T ) and ωn(T ). Also, for every n ≥ 0, we have

Fn(T ) −An = −ωn(T ).

Moreover since Ω is supposed to be a UB-domain, the Faber polynomials of Ω are

uniformly bounded on Ω, and hence the functions ωn are uniformly bounded on

the boundary of Ω. Since each function ωn tends to 0 at infinity, the maximum

principle implies that the sequence ωn is uniformly bounded on the complement

of Ω. Using the Dunford–Riesz integral representation of ωn(T ), it follows, in

particular, that for some positive constant C, we have

‖Fn(T ) −An‖ ≤ C for every n ≥ 0.

Hence, if x is an Ω-hypercyclic vector for T , the set {Anx : n ≥ 0} is 2C‖x‖-

dense in X in the sense that for every y in X there exists an integer n such that

‖Anx − y‖ ≤ 2C ‖x‖. Now a result of Feldman ([10]) states that whenever an

operator has an orbit which is ε-dense on X for some positive ε, this operator

is hypercyclic (although the ε-dense orbit itself may not be dense). Feldman’s

theorem implies that A is hypercyclic, a contradiction since σ(A) = φ(σ(T ))

lies outside the unit disk. This finishes the proof in the case where σ(T ) is

connected. The general case is proved as usual, using the fact that if M is an

invariant subspace for T , the operator induced by T on the quotient space X/M

is Ω-hypercyclic too.

Our next goal is the following modified Godefroy–Shapiro Criterion, which

should by now be quite natural. Here the only condition imposed on the domain

is that of rectifiable boundary.

Theorem 3.4: Let Ω be a bounded domain whose boundary is a rectifiable

Jordan curve, and T ∈ B(X) a bounded operator on X such that the two

following vector spaces

HΩ
+(T ) = sp [ker(T − zI) : z ∈ Ω

c
] and HΩ

−(T ) = sp [ker(T − zI) : z ∈ Ω ]
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are dense in X . Then T is Ω-hypercyclic.

Proof. The proof follows along the same lines as the classical criterion, using

a version of the Universality Criterion ([15]) for the sequence (Fn(T ))n≥0. It

suffices to exhibit two dense subsets E and F of X and a sequence (Sn)n≥0

of maps from F into X (not necessarily linear or continuous) such that the

following three conditions are satisfied:

(i) Fn(T )x tends to zero as n goes to infinity for every x in E;

(ii) Sny tends to zero as n goes to infinity for every y in F ;

(iii) Fn(T )Sny tends to y as n goes to infinity for every y in F .

We choose E = HΩ
−(T ) and F = HΩ

+(T ), and for y =
∑r

i=1 aiyi with Tyi =

ziyi, zi ∈ Ω
c
, we set

Sny =

r
∑

i=1

ai
1

Fn(zi)
yi

if every point zi is not among the zeros of Fn, and Sny = 0 in all other cases.

The three conditions above are now easy to check: whenever z is in Ω, Fn(z)

goes to zero as n goes to infinity (see Subsection 2.2), and this proves (i).

Assertion (ii) follows immediately from the fact that |Fn(z)| tends to infinity

when z lies outside Ω (Subsection 2.4). For the same reason, Fn(zi) is non-zero

for all i = 1, . . . , r, if n is large enough, and this implies (iii).

This criterion immediately yields a variety of examples of Ω-hypercyclic op-

erators, with corresponding applications. In all the forthcoming examples, we

suppose that Ω is a bounded domain whose boundary is a rectifiable Jordan

curve.

Example 3.5: Let Φ ∈ H∞(D) be a non-constant bounded analytic function on

D, and MΦ the associated multiplier on H2(D). Then M∗
Φ is Ω-hypercyclic if

and only if Φ(D)∩ ∂Ω 6= ∅, where Φ(D) denotes the conjugate of the set Φ(D).

The proof is exactly the same as in [13], using the fact that for every z ∈ D,

M∗
Φkz = Φ(z)kz , where kz is the reproducing kernel at the point z.

Example 3.6: Let B be the backward shift on ℓp, 1 ≤ p < +∞, or c0: Be0 = 0

and Ben = en−1 for n ≥ 1, where (en)n≥0 denotes the canonical basis of the

space. For every complex number ω with |ω| > d(0, ∂Ω), ωB is Ω-hypercyclic.
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This is an immediate consequence of the computation of the eigenvectors of

ωB. As a consequence, we obtain for instance the following:

Example 3.7: Let H be a complex separable infinite dimensional Hilbert space.

Every bounded operator on H can be written as the sum of two Ω-hypercyclic

operators.

Again, the proof follows along the same lines as in [14], since the proof of [14]

uses a decomposition of the form T = (A+ωS)+ (B−ωS), where S is a direct

sum of backward shifts with respect to a suitable orthogonal decomposition of

H . And if |ω| is large enough, Theorem 3.4 applies to A + ωS and B − ωS,

which proves the claim.

We finish this section with a last application of Theorem 3.4, which is a

description of the norm closure in B(H) of the class HCΩ(H) of Ω-hypercyclic

operators on a complex separable infinite dimensional Hilbert space H :

Example 3.8: The class HCΩ(H) consists exactly of those operators which sat-

isfy the following three conditions:

(1) σW (T ) ∩ ∂Ω is connected;

(2) σ0(T ) = ∅;

(3) ind(z − T ) ≥ 0 for every z ∈ ρSF (T ).

Here ρSF (T ) is the semi-Fredholm domain of T ,

σW (T ) = σ(T ) \ {λ ∈ ρSF (T ) : ind(λ− T ) = 0}

is the Weyl spectrum of T , and σ0(T ) is the set of normal eigenvalues of T ,

i.e. isolated eigenvalues such that the corresponding Riesz spectral projection

has finite dimensional range. Again, there is almost nothing to change in Her-

rero’s proof ([17]) of this result for Ω = D. The key point is to show the analogue

of Proposition 2.4 of [17]: when

(1) (3) is satisfied,

(2) σ(T ) and σW (T ) are connected sets,

(3) T − α is a semi-Fredholm operator of positive index for some α ∈ ∂Ω,

then there exists for every ε > 0 a compact operator Kε with ‖Kε‖ < ε such

that T − Kε is Ω-hypercyclic. Using the notation of [17], we know that Kε

can be chosen so that T −Kε − z is semi-Fredholm for every z in a closed disk

centered at the point α ∈ ∂Ω, and that HΩ
+(T −Kε) and HΩ

−(T −Kε) are dense
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in H . Theorem 3.4 then finishes the proof of this point. The rest of the proof

is exactly the same as in [17].

4. Faber-hypercyclicity and peripheral point spectrum

We are now concerned with the study of the influence of eigenvectors associated

to eigenvalues belonging to the boundary of Ω on the Ω-hypercyclicity of the

operator. We call such eigenvectors ∂Ω-eigenvectors. The following definition

is a mere copy of the definition of a perfectly spanning unimodular eigenvector

field given in [4]:

Definition 4.1: Let Ω be a bounded domain of C whose boundary is a rectifiable

Jordan curve, and let T ∈ B(X). We say that T has perfectly spanning ∂Ω-

eigenvectors if there exists a continuous probability measure σ on ∂Ω such

that for every A ⊆ ∂Ω with σ(A) = 1, we have

sp[ker(T − z) : z ∈ A] = X.

In view of Theorem 1.4, we would like to show that if T ∈ B(X) has perfectly

spanning ∂Ω-eigenvectors, then T is Ω-hypercyclic. Contrary to the results

of the preceding section, the proofs of which follow a more or less standard

pattern, it is not obvious how one should adapt the proof of Theorem 1.4 to

the Faber situation. Indeed, the proof of [4] seems to use the unit circle in a

crucial way, since everything relies on the behaviour of Fourier coefficients of

measures. Surprisingly enough, it turns out that the Ω-version of Theorem 1.4

is still true under some mild smoothness assumptions on the boundary of Ω:

Theorem 4.2: Suppose that the boundary of Ω is a curve of regularity C1+α

for some α ∈]0, 1[. If X is any separable infinite dimensional Banach space, and

T ∈ B(X) has perfectly spanning ∂Ω-eigenvectors, then T is Ω-hypercyclic.

Proof. The proof starts along the same lines as in [4]. Let σ be a continuous

measure on ∂Ω satisfying the assumptions of Theorem 4.2. Just as in Lemma

2.7 of [4], it follows from the Kuratowski–Ryll–Nardzewski Theorem that there

exists a countable family (Ei)i≥1 of eigenvector fields Ei : ∂Ω → X which are

σ-measurable such that supz∈∂Ω ‖Ei(z)‖ ≤ 1 and for every z ∈ ∂Ω,

ker(T − z) = sp [Ei(z) : i ≥ 1].
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Let now (fl)l≥1 be a dense sequence of smooth (C∞, for instance) functions in

L2(∂Ω, σ), and consider for i ≥ 1, l ≥ 1,

x
(i)
l =

∫

∂Ω

fl(ζ)Ei(ζ) dσ(ζ).

We have for every n ≥ 0

Fn(T )x
(i)
l =

∫

∂Ω

Fn(ζ) fl(ζ)Ei(ζ) dσ(ζ).

Since ∂Ω is of class C1+α, there exists (see Section 2.5) a positive constant M

such that for every n ≥ 1 and every z ∈ ∂Ω,

|ωn(z)| ≤M (ln(n)/nα)·

In particular, ωn tends to 0 uniformly on ∂Ω. This implies the existence of an

integer n0 such that |Fn(ψ(w)) − wn| < 1 for every n ≥ n0 and every w ∈ T,

which makes it possible to define

Snx
(i)
l =

∫

∂Ω

1

Fn(ζ)
fl(ζ)Ei(ζ) dσ(ζ)

for n ≥ n0, while for n < n0 we set Snx
(i)
l = 0. Clearly Fn(T )Snx

(i)
l = x

(i)
l

for n ≥ n0. The vectors x
(i)
l , i, l ≥ 1, span a dense subspace of X . Indeed, if

〈x∗, x
(i)
l 〉 = 0 for every i, l ≥ 1, then 〈x∗, Ei( · )〉 = 0 σ-almost surely for every

i ≥ 1, and since the ∂Ω-eigenvectors are σ-spanning, we get x∗ = 0. Now it

suffices to exhibit a sequence (nk) such that Fnk
(T )x

(i)
l and Snk

x
(i)
l tend to

zero as nk tends to infinity for every l, i ≥ 1, and the Universality Criterion will

then conclude the proof. Recall that ψ : D
c
−→ Ω

c
extends to a continuous

function on the unit circle which maps T univalently onto ∂Ω (it is even of class

C1+α under our smoothness assumption). Let µ be the measure on T defined by

µ(B) = σ(ψ(B)) for any measurable subset B of T: it is a probability measure

on T, which is continuous, and we have

Fn(T )x
(i)
l =

∫

T

Fn(ψ(λ)) fl(ψ(λ))Ei(ψ(λ))dµ(λ).

Now for every λ ∈ T and every n ≥ 0, we have

λn = Fn(ψ(λ)) + ωn(ψ(λ)).



Vol. 165, 2008 FABER-HYPERCYCLIC OPERATORS 59

So our formula for Fn(T )x
(i)
l becomes

Fn(T )x
(i)
l =

∫

T

λn fl(ψ(λ))Ei(ψ(λ)) dµ(λ)(6)

−

∫

T

ωn(ψ(λ)) fl(ψ(λ))Ei(ψ(λ)) dµ(λ).

We decompose in the same fashion the expression of Snx
(i)
l for n ≥ n0:

Snx
(i)
l =

∫

T

1

Fn(ψ(λ))
fl(ψ(λ))Ei(ψ(λ)) dµ(λ).

We have
1

Fn(ψ(λ))
=

1

λn
+

ωn(ψ(λ))

Fn(ψ(λ))λn
,

so that

Snx
(i)
l =

∫

T

λ−n fl(ψ(λ))Ei(ψ(λ)) dµ(λ)(7)

+

∫

T

ωn(ψ(λ))

Fn(ψ(λ))λn
fl(ψ(λ))Ei(ψ(λ)) dµ(λ).

The second term in each one of the expressions (6) and (7) goes to zero as n

goes to infinity: indeed, ωn tends to zero uniformly on ∂Ω by our smoothness

assumption on C, which proves the statement for (6), and for (7) it suffices to

show that the quantity
ωn(ψ(λ))

Fn(ψ(λ))λn

tends to zero uniformly on the boundary of Ω, for instance. But since
∣

∣

∣

∣

ωn(ψ(λ))

Fn(ψ(λ))

∣

∣

∣

∣

=

∣

∣

∣

∣

ωn(ψ(λ))

λn − ωn(ψ(λ))

∣

∣

∣

∣

≤
||ωn||∞,∂Ω

1 − ||ωn||∞,∂Ω
≤M

lnn

nα
,

the uniform convergence to zero on ∂Ω follows. Thus the study of Fn(T )x
(i)
l

(respectively Snx
(i)
l ) boils down to the study of the (−n)-th (respectively n-th)

Fourier coefficient of the vector-valued function λ 7→ fl(ψ(λ))Ei(ψ(λ)) with

respect to the measure µ. Proceeding just as in [4], we obtain the existence of

a sequence (nk) of integers such that
∫

T

λnk fl(ψ(λ))Ei(ψ(λ)) dµ(λ) and

∫

T

λ−nk fl(ψ(λ))Ei(ψ(λ)) dµ(λ)

tend to 0 as k goes to infinity for every i, l ≥ 1. The main ingredient of the

proof is Wiener’s Theorem, which can be applied because the measure µ is
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continuous. We refer the reader to [4] for details. This completes the proof of

Theorem 4.2.

5. Frequent Ω-hypercyclicity

This section is devoted to the study of frequent Ω-hypercyclicity. The main idea

of Theorem 5.1 below comes from a frequent hypercyclicity result of [6], which

runs as follows: if T ∈ B(X) is an operator whose unimodular eigenvectors can

be described through a countable family (Ei)i≥1 of functions Ei : T −→ X of

class C2 such that for every λ ∈ T,

ker(T − λ) = sp [Ei(λ) : i ≥ 1]

and sp [ker(T − λ) : λ ∈ T] = X , then T is frequently hypercyclic. This is a

direct consequence (see [6]) of the Frequent Hypercyclicity Criterion of [5] or

[8], and since many operators have C2 unimodular eigenvector fields, this result

can be applied in various situations, even in Fréchet spaces (see for instance [7]).

Recall that an F -space is a Fréchet space whose topology is defined thanks to a

translation invariant metric (F -norm) ‖ · ‖. Our aim is to prove the following

theorem for frequent Ω-hypercyclicity:

Theorem 5.1: Let Ω be a bounded domain of C whose boundary is a curve of

class C3+α for some α ∈]0, 1[, and T a continuous linear operator on a separable

infinite dimensional F -space X . Suppose that there exists a countable family

of functions (Ei)i≥1 defined on ∂Ω with values in X , of class C2, such that for

every z ∈ ∂Ω we have ker(T − z) = sp [Ei(z) : i ≥ 1]. We also suppose that the

∂Ω-eigenvectors are spanning, i.e.

X = sp [ker(T − z) : z ∈ ∂Ω].

Then T is frequently Ω-hypercyclic.

The proof relies on the Frequent Universality Criterion of [8], which we state

here in the context of Faber hypercyclicity:

Frequent Faber-hypercyclicity Criterion: Let Ω be a bounded domain of C

whose boundary is a closed Jordan curve, and let (Fn)n≥0 the sequence of

Faber polynomials of Ω. Let X be a separable F -space and T a continuous

operator on X . Suppose that there exist a dense sequence (xl)l≥1 of vectors of
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X and a sequence (Sn)n≥1 of maps defined on the set {xl ; l ≥ 1} such that the

following three conditions are fulfilled:

(1) for every l ≥ 1, the series
∑

n≥0 Fn+k(T )Skxl converges unconditionally

uniformly in k ≥ 0;

(2) for every l ≥ 1, the series
∑

n≥0 Sn+kFk(T )xl converges unconditionally

uniformly in k ≥ 0;

(3) for every l ≥ 1, Fn(T )Snxl tends to xl as n tends to infinity.

Then T is frequently Ω-hypercyclic.

Note that as soon as condition (2) above is satisfied, the series
∑

n≥0 Snxl

converges unconditionally in X for every l ≥ 1. Saying, for instance, that the

series
∑

n≥0 Fn+k(T )Skxl converges unconditionally uniformly in k ≥ 0 means

that for every ε > 0, there exists an integer N0 such that for every finite subset

F of N with F ∩ [0, N0] = ∅ and every k ≥ 0, we have
∥

∥

∥

∥

∥

∑

n∈F

Fn+k(T )Skxl

∥

∥

∥

∥

∥

< ε.

Proof of Theorem 5.1. Let (fl)l≥1 be a dense sequence of C2 functions in

L2(∂Ω, µ) where µ = ψ(dλ), dλ being the normalized length measure on the

unit circle. We set

x
(i)
l =

∫

∂Ω

fl(ζ)Ei(ζ) dµ(ζ) =

∫

T

fl(ψ(λ))Ei(ψ(λ)) dλ.

We have seen that the vectors x
(i)
l , i, l ≥ 1, span a dense subspace of X , and

thus it suffices to check the assumptions of the Frequent Faber-hypercyclicity

Criterion on these vectors x
(i)
l . We have for every n ≥ 0

Fn(T )x
(i)
l =

∫

T

Fn(ψ(λ)) fl(ψ(λ))Ei(ψ(λ)) dλ.

The smoothness condition on the boundary implies that ωn tends to zero uni-

formly on ∂Ω, and therefore there exists n0 ∈ N such that |Fn(ψ(λ)) − λn| < 1

for every n ≥ n0 and every λ ∈ T. In particular, Fn(ψ(λ)) does not vanish on

T for every n ≥ n0. Just as in the proof of Theorem 4.2 above, we set

Snx
(i)
l =

∫

T

1

Fn(ψ(λ))
fl(ψ(λ))Ei(ψ(λ)) dλ for n ≥ n0

and Snx
(i)
l = 0 for n < n0. Then condition (3) of the criterion above is clearly

satisfied. In all the arguments below we will assume that n ≥ n0. We have to
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study the quantities

Fn+k(T )Skx
(i)
l =

∫

T

Fn+k(ψ(λ))

Fk(ψ(λ))
fl(ψ(λ))Ei(ψ(λ)) dλ.

Since ‖ωk‖∞,∂Ω goes to zero as k goes to infinity, there exist k0 ≥ 0 and δ > 0

such that |λk − ωk(ψ(λ))| ≥ δ for every λ ∈ T and k ≥ k0. We have for λ ∈ T

and n ≥ n0, k ≥ k0,

Fn+k(ψ(λ))

Fk(ψ(λ))
= λn −

ωn+k(ψ(λ))

λk − ωk(ψ(λ))
+ λn ωk(ψ(λ))

λk − ωk(ψ(λ))
,

so that the expression for Fn+k(T )Skx
(i)
l can be rewritten as

Fn+k(T )Skx
(i)
l =

∫

T

λn fl(ψ(λ))Ei(ψ(λ)) dλ(8)

−

∫

T

ωn+k(ψ(λ))

λk − ωk(ψ(λ))
fl(ψ(λ))Ei(ψ(λ)) dλ

+

∫

T

λnfl(ψ(λ))Ei,k(ψ(λ))(ψ(λ)) dλ,

where

Ei,k(ψ(λ)) =
ωk(ψ(λ))

λk − ωk(ψ(λ))
Ei(ψ(λ)).

The first term in (8) is easy to control: fl ◦ ψ · Ei ◦ψ is a function of class C2.

This implies the existence of a positive constant C1 such that for every n ≥ n0,
∥

∥

∥

∥

∫

T

λn fl(ψ(λ))Ei(ψ(λ)) dλ

∥

∥

∥

∥

≤ C1/n
2·

The second term is also small uniformly in k ≥ k0, due to the fact that the

boundary of Ω is of class C3+α. Indeed, we have

‖ωn+k‖∞,∂Ω = O
(

ln(n+ k)/(n+ k)2+α
)

and |λk − ωk(ψ(λ))| ≥ δ for every λ ∈ T and k ≥ k0. This yields the existence

of a constant C2 > 0 such that for every k ≥ k0 and n ≥ 1,
∥

∥

∥

∥

∫

T

ωn+k(ψ(λ))

λk − ωk(ψ(λ))
fl(ψ(λ))Ei(ψ(λ)) dλ

∥

∥

∥

∥

≤ C2/n
2·

The remaining difficulty is to estimate the third term in (8) uniformly in k.

There exists a constant M > 0 such that for every n ≥ n0 and k ≥ k0,
∥

∥

∥

∥

∫

T

λn fl(ψ(λ))Ei,k(ψ(λ)) dλ

∥

∥

∥

∥

≤
M

n2
‖(Ei,k ◦ ψ)′′‖∞,T,
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so the issue is to bound the second-order derivatives of Ei,k ◦ ψ independently

of k. Since the boundary of Ω is of class C3+α, ωk is twice differentiable up to

the boundary of Ω, and by Proposition 2.2 we have

‖ω′′
k‖∞,∂Ω = O (ln k/kα) .

Then it is not difficult to see that there exists a positive constant C3 such that

for every large n and k ≥ k0,
∥

∥

∥

∥

∫

T

λn fl(ψ(λ))Ei,k(ψ(λ)) dλ

∥

∥

∥

∥

≤ C3/n
2.

It follows that the series
∑

n≥0 ‖Fn+k(T )Skx
(i)
l ‖ converges uniformly in k ≥ k0.

Since this series is also convergent for every k < k0, the convergence is uniform

in k ≥ 0, and assumption (1) of the Frequent Faber-hypercyclicity Criterion is

satisfied. Assumption (2) is proved in the same fashion.

Again, this gives many examples of frequently Ω-hypercyclic operators: the

operators of Examples 3.5, 3.6 and 3.7, for instance. Other examples can be

constructed from the operators of [5], [8] or [7]. We leave the reader to write

these down by himself, and we concentrate below on two examples of operators

on Fréchet spaces which are frequently Ω-hypercyclic for every simply connected

bounded domain Ω with C3+α boundary. Clearly such operators cannot exist

on Banach spaces by Proposition 3.3.

Example 5.2: The translation operator T : f 7−→ [z 7→ f(z + 1)] on the space

O(C) of entire functions on C is frequently Ω-hypercyclic for every simply con-

nected bounded domain Ω with C3+α boundary.

Proof. For every λ ∈ C, let fλ be the function defined by fλ(z) = eλz.

We have Tfλ = eλfλ. If Ω satisfies the assumptions above, let τ 7→ z(τ),

0 ≤ τ ≤ 1, be a parametrization of ∂Ω of class C3+α. If 0 belongs to ∂Ω, we

choose z(0) = z(1) = 0. Let γ = {z(τ), 1/4 ≤ τ ≤ 3/4}. It makes sense to

consider for 1/4 ≤ τ ≤ 3/4 the function F (τ) = r(τ)flog z(τ), where log is a

determination of the logarithm along the arc γ, and r is a smooth bump func-

tion on [0, 1] whose support is the segment [1/4, 3/4] and which is positive on

]1/4, 3/4[. Then TF (τ) = z(τ)F (τ), and we obtain in this way an eigenvector

field for T on ∂Ω of class C3+α. In order to apply Theorem 5.1, it suffices to

prove that the linear span of the functions F (τ) is dense in O(C). This follows

for instance from an argument of [7].
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Example 5.3: The differentiation operator D : f 7→ f ′ on O(C) is frequently

Ω–hypercyclic for every simply connected bounded domain Ω with C3+α bound-

ary.

The argument is the same. These two examples show another instance of

the fact that the translation and differentiation operators on O(C) are “more

hypercyclic” that most operators on Banach spaces (see for instance [8], [3]). We

do not know whether there exists a function f ∈ O(C) which is Ω–hypercyclic

(or even frequently Ω–hypercyclic) for T (or D) for every simply connected

bounded domain Ω with smooth boundary.
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